ICELANDIC TRANSPORT AUTHORITY

ALTERNATIVE FUELS FOR AVIATION

Nordisk Arbeitsgrupp for Luftfartens Miljöfrågor

May 30th 2017 Flugröst, Reykjavik, Iceland

Jon Bernodusson, Subject Leader, Research and Development Icelandic Transport Authority

Annual Emissions

(10⁶ tons/year)

Energy Density Content / Heat Value

Comparison of the Energy Levels of several Fuel Sources

=> Fuel		=> Energy Carrier		
Fuel / Carrier	MJ/litre	Equivalence	CO ₂ -Emission	Health Effects
Jet Fuel (Kerosene)	37.6	100%	3.160 kg	Toxic
Fossil Diesel	38.6	103%	3.160 kg	Toxic
Canola Oil (Raps)	37.1	99%	2.797 kg	Harmless
BioLiq (BtL)	36.3	97%	3.140 kg	Toxic
Biodiesel (RME)	35.1	94%	2.797 kg	Harmless
Gasoline	34.8	93%	3.160 kg	Toxic
Ethanol	23.5	63%	1.913 kg	Toxic ??
Methanol	17.9	48%	1.375 kg	Highly Toxic
Methane Gases	25.3	67%	2.750 kg	Harmless
DME	19.2	51%	1.913 kg	Toxic
Hydrogen	9.3	24%	0.000 kg	Harmless

Aircraft Total Weight

The total weight of an Airplane can approximately be divided in three main parts

- 1/3 of the weight is the <u>Airplane body</u>
- 1/3 of the weight is the <u>Jet-Fuel</u>
- 1/3 of the weight is the <u>Piloting</u>

Comparison – Jet Fuel vs. Biodiesel

Properties	Jet Fuel (Kerosene)	Biodiesel (RME)
Density (kg/m ³)	775 - 840	860 - 900
Freezing Point (°C)	- 47	- 5
Boiling Point (°C)	176	200
Flash Point (°C)	38	120
Autoignition Temperature (°C)	210	210 - 250
Specific Energy (MJ/kg)	42,8	38,7
Energy Density (ML/litre)	37,6	35,1
Cetane Number	45 – 52	48 - 55
Carbon Dioxide (CO ₂) emission (kg/kg)	3.160	2.797

Necessary Additives

Additives for Jet-Fuel and Bio-Jet-Fuel

- 1. Antioxidants
 - prevent gumming, cupper and some metals
- 2. Antistatic agents
 - prevent sparking and dissipate static electricity
- 3. Corrosion inhibitors
 - prevent corrosion in tanks and pipes
- 4. Icing inhibitor
 - prevent the fuel against icing
- 5. Biocides
 - prevent bacterial and fungal growth

The Biodiesel Generations

• 1. Generation is Biodiesel from Rapeseed oil (RME)

- Land use => 50% Fertilizer, 35% Fodder and 15% oil
- 2. Generation is Biomass to Liquid
 - Liquid from biomass
 - Bio oil (pyrolysis oil) by temperatures between 350 550°C
 - Fischer-Tropsch-Process is used to produce synthetic fuels from gasified biomass

• 3. Generation is "Green Algae"

- Light
- Carbon dioxide (CO_2)
- Waste water
- Yields 50 times more oil per hectare than rapeseed (1. Generation)

Jet - Biofuel

- The air transport industry is responsible for 2-3 percent of man-made carbon dioxide (CO₂) emitted.
- Boeing estimates that biofuels could reduce flight-related greenhouse gas emissions by 60 to 80 percent.
- One possible solution which has received more media coverage than others would be blending synthetic fuel derived from algae with existing jet-fuel

Jet – Biofuels (status)

- **Green Flight International** became the first airline to fly jet aircraft on **100% biofuel**. The flight from **Reno_Stead_Airport** in Stead, Nevada.
- **Boeing** and **Air New Zealand** are collaborating with jet biofuel developers around the world.
- Virgin Atlantic successfully tested a biofuel blend consisting of 20/80 percent which was fed to a single engine on a 747 flight from London Heathrow to Amsterdam Schiphol.
- A consortium consisting of Boeing, NASA's **Glenn Research Center**, **MTU Aero Engines** (Germany), and the U.S. **Air Force Research Laboratory** is working on development of jet fuel blends containing a substantial percentage of biofuel.
- British Airways and Solena Group are establishing a sustainable jet fuel plant in East London, UK as BA plans to use the biofuel to power part of its fleet from 2014.
- 24 commercial and military biofuel flights are using "Green Jet Fuel".
- In 2011, **United Continental Holdings** was the first United States airline to fly passengers on a commercial flight using a blend of sustainable, advanced biofuels and traditional petroleum-derived jet fuel.

201

PORLÁKSHÖFN

2040

W

Thank your for your attention